Tahir Yavuz
Baskent University, Turkey
Title: Design of the concentrator – wind turbine combinations
Biography
Biography: Tahir Yavuz
Abstract
Wind technology is one of the fastest growing alternative energy technologies. This technology can also be used in hydrokinetic turbines. Today, depending on technological developments, the minimum speed of wind and hydrokinetic current to produce electricity from wind and hydrokinetic turbines is about 3-4 m/s and 1-2 m/s respectively. These limit the choice of physical locations where wind and hydrokinetic turbines can be implemented. To generate electricity at lower wind speed and hydrokinetic current the concentrator augmented wind turbine (CAWT) is considered. The CAWT improves the efficiency of the wind turbines by increasing the wind speed upstream of the turbine. Preliminary work of the study was presented in the 2nd International Conference on Fluid Dynamics & Aerodynamics. In this study, the optimization of the combinations of concentrator with wind turbine is curried out. The actuator porous disc model is used to represent wind turbine in the concentrator. The Box-Behnken experimental method combining the CFD analysis is used in the optimization. Optimum concentrator parameters are determined by the means of the Response Surface Method. The optimum geometric parameters are obtained as a function of the turbine diameter. Concentrator increases the free wind speed and power output by the factors of about 1.38 and 2.62 respectively. The system can be used offshore and onshore wind turbine applications.